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Abstract. Magnetic relaxation of the partially penetrated screening current during flux creep has been
studied. A theoretical analysis was based on the macroscopic description of the flux creep using the power
and exponential equations for current-voltage characteristics of superconductors. The analytical flux-creep
solutions were written and compared with numerical simulations of corresponding problems. Equations
describing the relaxation of the electromagnetic field, magnetic moment, moving penetration boundary
are derived. It is shown that peculiarities of relaxation phenomena are determined by dynamics of the
electric field on the surface of the superconductor. The performed analysis allows to formulate nontrivial
conjugation conditions that take place on moving boundary of screening current. In accordance with these
conditions the electromagnetic field induced inside a superconductor by external perturbations smoothly
approaches its undisturbed values. The essential role of the low electric field area of current-voltage char-
acteristics in the flux relaxation and primarily in high-temperature superconductors is shown.

PACS. 74.60.Ge Flux pinning, flux creep, and flux-line lattice dynamics – 74.60.Jg Critical currents –
74.25.Ha Magnetic properties

1 Introduction

The study of the magnetic relaxation of superconductors
is very interesting from an application as well as basic-
science point of view. The investigations of these non-
equilibrium phenomena in the macroscopic approximation
become a useful tool for understanding the microscopic
mechanisms of pinning. That is why many authors have
given considerable attention to the study of magnetic re-
laxation problems both experimentally and theoretically.
However, only the fully penetrated state is well under-
stood. The numerous previous investigations for the cases
of partial flux penetration based on the numerical methods
did not give full description of magnetic relaxation prob-
lem. It should also be noted that the existing solutions for
the relaxation problem of the partially penetrated screen-
ing current in the high-temperature superconductor with
logarithmic current dependence of the potential barrier
are ambiguous [1–3]. In the present paper the analytical
solutions for the Maxwell equations describing the mag-
netic relaxation of low- and high-temperature supercon-
ductors during flux creep are written. They make it possi-
ble to formulate for the first time some physical features of
the magnetic relaxation of partially penetrated screening
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current during flux creep in terms of different phenomeno-
logical equations of current-voltage (I-V) characteristics.

2 Simple theoretical models
of current-voltage characteristics
in the flux-creep regime

The dependence of the electric field on the current in-
duced inside the superconductor by the varying exter-
nal magnetic field or by the transport current has an
essentially nonlinear form. The nonlinear part of current-
voltage characteristics is due to many reasons. Numer-
ous studies (see, for example, [4–10] and references cited
therein) show that the following equations

E = EC(J/JC)n (1)
E = EC exp[(J − JC)/Jδ] (2)

can be used for the description of I-V characteristics
of both the low- and high-temperature superconductors.
Here, JC is the current density at E = EC ; n is the creep
exponent of the current-voltage characteristic; Jδ is the
creep current density.

In equation (2) the electric field is E0 =
EC exp(−JC/Jδ) at J = 0. To avoid this uncertainty, let
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Fig. 1. Superconductor in external magnetic field B0(t).

us write equation (2) as

E = EC exp[(J − JC)/Jδ] − E0. (3)

Equation (1) corresponds to a logarithmic current de-
pendence of the potential barrier [1,2] when the flux creep
is determined by numerous spatial defects of the super-
conductor. The thermally activated model [4] with linear
current dependence of the potential barrier lies at the ba-
sis of the exponential relation (2). This model describes
flux-creep state of the superconductor with point defects
of its structure. There are also some macroscopic reasons
leading to an exponential rise of the I-V characteristic.
In particular, it may result from the bulk heterogeneity
of superconducting properties inside the sample. In addi-
tion to the bulk heterogeneity of critical parameters the
superconductor may have the longitudinal heterogeneity.
However, the E(J) relations of such superconductors are
also approximated satisfactorily by equation (1).

3 Model

Let us consider an ideally cooled half-infinite superconduc-
tor (Fig. 1) placed in the homogeneous external magnetic
field H0(H0 � Hc1, Hc1 is the lower critical field) parallel
to its surface in the Z-direction when this field induces
a uniform induction B0 = µ0H0. Assume that any field
disturbance, which is much smaller then B0, takes the
constant value B0,i at t = ti and it does not change the
constants JC , Jδ, n. This perturbation produces the ex-
tra magnetic induction and induces the screening current
in the Y-direction that diffuses into the superconductor.
For this case the Maxwell equations describing the macro-
scopic decay of the induced electric field E = Ey(x, t) are
given by one-dimensional unsteady equations

∂2E

∂x2
= µ0




JC

nE

(
E

EC

)1/n
∂E

∂t
, (4)

Jδ

E + E0

∂E

∂t
, (5)

which satisfy the boundary conditions

∂E

∂x
(0, t) = 0, E(∞, t) = 0 (6)

and initial condition E(x, ti) = E0(x). Along with these
conditions an additional relation

µ0

∫ ∞

0

J(x, t)dx = B0,i t ≥ ti (7)

is needed, which follows from the conservation law of in-
duced screening current. As will be shown below, it plays
an important role in the correct description of the flux-
creep states.

It should be noted that the penetration depth of the
electric field is not known a priori. Therefore, condi-
tions (6, 7) are based on the assumption that the screen-
ing current flows over the total volume of superconductor
like in the computer simulation models (see, for exam-
ple, [11,12]).

Different specimens are investigated in experiments.
To study the electromagnetic properties of superconduc-
tors of arbitrary shape general calculation algorithms were
presented in [13,14]. However, in many practical cases
two- or even one-dimensional models may be used [15].
Moreover, 1D consideration allows one to understand the
physical features of this phenomenon solving simplified
equations without large volume of computations. From
this point of view the possible 1D solution in closed form
is convenient to evaluate the experiments even for realistic
geometry of superconductors. So, let us write the analyti-
cal solutions of the problem under consideration using the
method of the scaling functions and discuss the peculiar-
ities of electromagnetic states of superconductors during
magnetic relaxation of partially penetrated screening cur-
rent which are formulated in present theory for the first
time.

4 Relaxation phenomena in a superconductor
with the power current-voltage characteristic

Let us introduce the dimensionless variables e =
E/EC , X = x/Lx, τ = t/tx, where Lx = B0,i/µ0JC ,
tx = B2

0,i/(µ0JCEC). The scaling solution of the prob-
lem (4, 6, 7) can be found in the form

e = (τ + τ0)qW (Z), X = (τ + τ0)pZ,

q = −n/(n + 1), p = 1/(n + 1)

where τ0 is the constant to be determined. Then the par-
tial differential equation (4) is reduced to an ordinary dif-
ferential equation

(n + 1)
d2W

dZ2
+

Z

n
W

1−n
n

dW

dZ
+ W

1
n = 0, (8)

with the boundary conditions

dW

dZ
(0) = 0, W (∞) = 0. (9)

Equation (8) with condition (9) has the analytical solution

W (Z) =
[

n − 1
2n(n + 1)

(
Z2

0 − Z2
)] n

n−1
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Fig. 2. Scaling distribution of the magnetic induction in a superconductor with the power I-V characteristic.

where Z0 is an unknown constant. According to (7) the
value Z0 is given by ∫ z0

0

W
1
n dy = 1. (10)

Then it can be written as

Z0 =
[
2n(n + 1)

n − 1

] 1
n+1

(
1
Ψ1

)n−1
n+1

, Ψ1 =
∫ 1

0

(1−y2)
1

n−1 dy.

It is easy to see that both value of scaling function
W (Z) and all derivatives over Z vanish at a point Z = Z0.
Hence, function W (Z) approaches smoothly to zero value
at Z = Z0.

In accordance with scaling solution the decay of the
electromagnetic field in the superconductor with the
power I-V characteristic is described by the following ex-
pressions

E(x, t) = Ea(t)
(

1 − x2

x2
0

) n
n−1

,

B(x, t) = B0,i

[
1 − 1

x0Ψ1

∫ x

0

(
1 − y2

x2
0

) 1
n−1

dy

]
. (11)

Here

Ea(t) = EC

(
tn

t + t0

) n
n+1

, tn =
n − 1

2n(n + 1)Ψ2
1

B2
0,i

µ0JCEC
·

In this case, the time-dependent equation of the magneti-
zation boundary is given by

x0(t) =
B0,i

µ0JCΨ1

(
EC

Ea(t)

) 1
n

. (12)

In the given solution constant t0 is unknown. To estimate
it let us use the value of the electric field E0,i = E0(0)
on the surface of the superconductor at t = ti. This gives
t0 = te−ti, where te is the characteristic time decay, which
should be written as

te =
n − 1

2n(n + 1)Ψ2
1

B2
0,i

µ0E
(n+1)/n
0,i

E
1/n
C

JC
·

The curves in Figure 2 show the influence of power I-V
characteristic on the distribution of the magnetic induc-
tion in the magnetization region. It is easy to see that the
value n = 10 describes satisfactorily the boundary value
above which the distribution of the magnetic induction
inside the superconductor is nearly linear. This estimate
gives reasons for the use of simplified methods of relax-
ation analysis as it was done, for example, in [3].

The written for the first time full analytical solution
in which all constant are exactly determined shows that
magnetic relaxation in a superconductor with the power
I-V characteristic is accompanied by formation of a
special state. Firstly, the electromagnetic field penetrates
as a characteristic wave at the finite rate

dx0

dt
=

2nΨ1

n − 1
Ea(t)
B0,i

although there is a stable voltage inside superconductor
due to flux creep. Secondly, the conjugation area between
perturbed and unperturbed values of the electric field
and magnetic induction exists, since the conditions
E = 0, B = 0, ∂kE/∂xk = 0, ∂kB/∂xk = 0, k = 1, 2, 3 ...
take place at the moving boundary x0(t). As a result, the
differential resistivity of superconductor ρd = ∂E/∂J has
a special change. According to the formula

ρd(x, t) = n
EC

JC

(
Ea(t)
EC

)n−1
n

(
1 − x2

x2
0

)

it monotonously decreases and ρd ≡ 0 at x0(t) ≥ 0.
The importance of these results should be underlined.

They are not a priori evident and show the general pe-
culiarity of the relaxation states. These phenomena are
determined by electric field dynamics on the surface of
the superconductor. Let us reveal that it takes place for
all equations of the I-V characteristics of superconductors.
Integrating equation ∂B/∂t = −∂E/∂x from 0 to x0 and
using conditions E(x0, t) = 0, B(x0, t) = 0 one can obtain
the time-dependent equation

d
dt

∫ x0

0

B(x, t)dx = Ea(t)

describing the moving boundary evolution as the func-
tion of the electric field variation on the surface
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Fig. 3. Distribution of electric field in Nb-Ti superconductor with the power I-V characteristic at relaxation stage (— numerical
solution, - - - - scaling solution): 1 − t = 2 × 10−4 s, 2 − t = 2.001 × 10−4 s, 3 − t = 2.005 × 10−4 s, 4 − t = 2.01 × 10−4 s,
5 − t = 2.02 × 10−4 s, 6 − t = 2.05 × 10−4 s.

of superconductor. This law takes place also during ramp
rate stage [16].

The written solution allows one to understand the cor-
rectness of depiction of the magnetic relaxation in the
superconductor with logarithmic dependence of the po-
tential barrier on the current presented in [1,2]. As shown
in [3], the formula proposed in [1] to estimate the magnetic
moment of the superconducting slab for the partial screen-
ing current penetration has error. Moreover, according to
the above solution the conditions of the smooth conjuga-
tion of the disturbed and undisturbed values of the elec-
tromagnetic field at the moving boundary x0(t) must be
satisfied. The same conditions must be also fulfilled for the
problem discussed in [1,2]. However, the solution proposed
in [1] does not satisfy these conditions. The error made
in [1] is due to that the additional condition J(x, t) = JC

at x = 0, t = 0 was used to determine unknown constant
appearing in the solution instead of the condition similar
to (7).

Let us use the above-formulated solution to define the
magnetic moment

µ0M(t) =
1
a

∫ x0

0

B(x, t)dx − B0,i

of the superconducting slab of half thickness a before the
full penetration state. According to (11) the result is

−µ0M(t)/B0,i = 1 − ϕnx0(t)/a

for all x0(t) < a. Here,

ϕn = 1 − 1
Ψ1

∫ 1

0

Ψ(η)dη, Ψ(η) =
∫ η

0

(1 − y2)
1

n−1 dy.

This formula can be reduced to the relation

M(t) =

Mi + M1

(
EC

E0,i

) 1
n

[(
t − ti + te

te

) 1
n+1

− 1

]
ϕn, t ≥ ti

where Mi is the magnetic moment of the slab at t = ti
and M1 = B2

0,i/(µ2
0JCaΨ1).

These expressions show that magnetic moment relax-
ation of partially penetrated currents depends on his-
tory of external magnetic field variation, size of the slab
and its physical properties, similarly to the full penetra-
tion case [1,17] when the universal electric field distri-
bution E = f(x)φ(t) takes place after some transient
time. In the mean time, unlike the full penetration case
the above-written formulae indicate that electric field dis-
tribution during incomplete flux penetration has another
form, which is written as follows E = Ea(t)ζ[x/x0(t)], i.e.,
the magnetic relaxation is determined by dynamics of the
moving boundary x0(t) and electric field decay Ea(t) on
the surface.

Differentiating M(t) over the time it is easy to find

dM

dt
=

M1ϕn

(n + 1)(t − ti + te)

(
t − ti + te

tn

) 1
n+1

.

This formula allows one to find two characteristic mag-
netic relaxation rates. If t − ti � te, then the short-time
rate of the magnetic moment relaxation is almost constant
and can be estimated as

dM

dt
=

M1ϕn

(n + 1)te

(
EC

E0,i

) 1
n

=
2nΨ1ϕm

n − 1
E0,i

µ0a
·

If t − ti � te, then the decreasing long-time relaxation
rate is

dM

dt
≈ M1ϕn

(n + 1)(t − ti)

(
t − ti

tn

) 1
n+1

which in logarithmic time scale can be written as

dM

d ln t
≈ M1ϕn

n + 1
t

t − ti

(
t − ti

tn

) 1
n+1

.

To illustrate the scaling solution possibility the
simulation results of corresponding electrodynamic states
are shown in Figures 3–5. Figure 3 displays the initial
relaxation stage in the low-temperature superconductor
(n = 80, EC = 10−4 V/m, JC = 4 × 109 A/m2). The
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Fig. 4. Dynamics of moving boundary in YBCO superconductor with the power I-V characteristic at ramp rate and relaxation
stages: — numerical solution, - - - - - scaling solution.

Fig. 5. Time dependence of magnetic moment of YBCO superconductor during ramp rate and relaxation stages: 1− dB/dt =
10−4 T/s, ti = 3 × 10−4 s, 2 − dB/dt = 10−4 T/s, ti = 10−3 s, 3 − dB/dt = 10−3 T/s, ti = 3 × 10−4 s.

electric field distribution E0(x) specified at t = ti was
taken according to the numerical simulation of the ramp
rate stage. Here and below the ramp rate simulations are
based on the numerical solution of the equations (4, 5)
with conditions

∂E

∂x
(0, t) = −dB

dt
, E(x0, t) = 0,

E(x, 0) = 0, µ0

∫ x0

0

J(x, t)dx =
dB

dt
t.

Curve 1 corresponds to electric field distribution at ti =
2 × 10−4 s for the case dB/dt = 1 T/s. Solid curves are
obtained using numerical solution of magnetic relaxation

problem described by (4, 6, 7). Dashed curves 4–6 are
calculated according to the formulae (11, 12). Figure 4
shows the curves describing the evolution of the moving
boundary of the magnetization region inside the high-
temperature superconductor with parameters defined by
relations n = 23, EC = 1.778 × 10−4 V/cm, JC = 2 ×
105 A/cm2. These curves were obtained under the assump-
tion that the external magnetic field was increased at the
rate dB/dt = 7.5× 10−3 T/s and fixed at t ≥ 2 × 10−4 s.

It is easy to see that scaling solution is the good ap-
proximation that can be used to describe exactly enough
complete period of the magnetic relaxation. To demon-
strate this capability the temporal peculiarities of the
magnetic moment evolution of mentioned-above high-
temperature superconductor is shown in Figure 5.
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5 Relaxation phenomena in a superconductor
with the exponential current-voltage
characteristic

Let us investigate the magnetic relaxation in the super-
conductor with I-V characteristic (3). Introducing dimen-
sionless variables e = E/EC , X = x/Lx, τ = t/tx, where
Lx = B0,i/µ0Jδ, tx = B2

0,i/(µ0JδEC), the unknown elec-
tric field distribution can be found in the form of power
series expansion using the small parameter e0 = E0/EC �
1, i.e., e = ε0 + ε1e0 + ε2e

2
0+ ...

Confining ourselves to the zero approximation one can
reduce the problem (5, 6, 7) to the integration of the fol-
lowing partial differential equation

∂ε0

∂τ
= ε0

∂2ε0

∂X2
(13)

with the boundary condition

∂ε0

∂X
(0, τ) = 0 (14)

and the preservation condition of the induced current with
density j = 1 + δ ln(ε0 + e0)∫ x0

0

j(X, τ)dX = δ. (15)

Equation (15) is written already in accordance with the
existence of the finite length of the magnetization region,
at which the condition ε0(X0, τ) = 0 must be fulfilled.
Here, j = J/JC , δ = Jδ/JC .

Due to the smallness of e0, the approxima-
tions ε1, ε2, ε3, ... will have practically no quantitative in-
fluence on the value of e(X, τ). Therefore, ε0 can be used
as the fundamental solution and the main investigated
phenomenon occurs on its background.

The problem defined by equations (13–15) is more
complex than the one investigated above. Therefore, let
us describe its solution in a more detailed way. To find
the electric field distribution in scaling form, the corre-
sponding solution should be written as the product of two
functions, each of which depends only on one argument

ε0 = T (τ)W (Z), Z = X/X0(τ).

Then equation (13) can be written as

dT

dτ
W − dX0

dτ

Z

X0
T

dW

dZ
=

T 2

X2
0

W
d2W

dZ2
· (16)

Since the functions T (τ) and X0(τ) are initially taken
arbitrarily, let us demand that they would satisfy
the equality

−αX0dT/dτ = TdX0/dτ

where α is the constant that must be determined. This
equality allows the connection between T (τ) and X0(τ)
to be found. It has the form

X0(τ) = γT−α(τ). (17)

Here, γ is the constant, which can be calculated.
The given expressions permit the variables in equa-

tion (16) to be separated. The corresponding relation has
the form

T 2

X2
0

dT

dτ
=

W
d2W

dZ2

W + αZ
dW

dZ

= −β.

Here, β is the separation constant. Taking into account
equation (17) it is easy to obtain T (τ) with the accuracy
of the unknown constant τ0

T (τ) = T1(τ)/β, X0(τ) = γ1(τ + τ0)α/1+2α

where

T1(τ) =
γ2
1

(1 + 2α)(τ + τ0)1/1+2α
,

γ1 = [γβα(1 + 2α)α]1/1+2α.

Let us introduce a new function W1 = W/β. Then solution
being equal to

ε0 = T1W1 =
γ2
1W1

(1 + 2α)(τ + τ0)1/1+2α

does not depend on constant β, and the initial problem is
reduced to the integration of a differential equation

W1
d2W1

dZ2
+ αZ

dW1

dZ
+ W1 = 0 (18)

with the boundary conditions

dW1

dZ
(0) = 0, W1(1) = 0.

The possible solution for equation (18) has the follow-
ing character. Firstly, it is easy to show that all the deriva-
tives dkW1(Z)/dZk, k = 1, 2, 3, ... equal zero at Z = 1. In
addition, two integral equalities follow from equation (18)

1 + α

∫ 1

0

Z

W1

dW1

dZ
dZ = 0,

∫ 1

0

(
dW1

dZ

)2

dZ + (α − 1)
∫ 1

0

W1dZ = 0.

As, according to its physical sense, W1 ≥ 0 and dW1/dZ ≤
0, then these equalities exist only when 0 < α < 1.

Thus, the distribution of the electromagnetic field in-
side the superconductor with the exponential I-V charac-
teristic can be formally determined within the accuracy
of three constants α, γ, τ0 after integrating equation (18).
From the formal point of view, condition (15) should be
used to determine α and γ. However, this condition does
not allow the final solution in scaling approximation to be
found. Physically this conclusion corresponds to breaking
the scaling form in the character of the desired solution.
At the same time its real evolution can be approximated
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by the scaling solution asymptotically that permit to es-
timate the unknown constants α and γ. For this purpose
let us simplify I-V characteristic described by equation (3)
expanding the exponential term as a power series. Using
the linear term of this series let us find α and γ for the fol-
lowing I-V characteristic J ≈ JC(E/E0)δξ, where ξ < 1 is
the correction term of the linear expansion. This value can
be calculated from condition: E = EC at J = JC . Then
ξ = (E0/EC)δ. For this approximation condition (15) can
be expressed as

δ = γ1+2δ
1

(τ + τ0)
α−δ
1+2α

(1 + 2δ)δ

∫ 1

0

W δ
1 (Z)dZ.

As its right part should not depend on time then this
requirement leads to equalities

α = δ, γ1 =
[
δ(1 + 2δ)δ/

∫ 1

0

W δ
1 dZ

] 1
1+2δ

. (19)

As δ � 1 then γ1 can be approximated by the expression

γ1 ≈ [δ(1 + 2δ)δ]1/1+2δ. (20)

To determine W1(Z), let us transform equation (18) to
the equivalent integral equation. After some algebra the
result can be written as

W1(Z) =
1 − Z2

2
− α

∫ Z

1

dx

∫ x

0

y

W1

dW1

dy
dy.

Because of α being small the scaling function W1(Z) is
exactly enough approximated by the zero solution, i.e.,

W1(Z) ≈ (1 − Z2)/2.

In accordance with these approximations the relaxation
phenomena in the superconductor with the exponential
I-V characteristic can be described by formulae

E(x, t) = Ea(t)(1 − x2/x2
0),

B(x, t) = B0,i − µ0Jcx − µ0Jδx ln
Ea(t)
EC

− µ0Jδx

[(
1 +

x

x0

)
ln

(
1 +

x

x0

)

−
(

1 − x

x0

)
ln

(
1 − x

x0

)
− 2

x

x0

]
(21)

where

Ea(t) =
ECγ2

1

2(1 + 2δ)

(
tx

t + t0

) 1
1+2δ

.

The scaling approximation of the penetration depth posi-
tion is given by

xa,0(t) =
B0,iγ

1+2δ
1

µ0JCδ

(
EC

2(1 + 2δ)Ea(t)

)δ

(22)

and according to equation (15) it will be increased as

x0(t) =
B0,i

µ0JC

[
1 + δ ln Ea(t)

EC
+ 2δ(ln 2 − 1)

] · (23)

The constant t0 can be determined using the electric
field value E0,i on the surface of the superconductor at
t = ti. Then t0 = te − ti where the characteristic time
decay can be written as

te =
B2

0,i

µ0JδEC

(
γ2
1

2(1 + 2δ)
EC

E0,i

)1+2δ

.

The given formulae enable one to calculate the mag-
netic moment relaxation. For a superconducting slab of
half thickness a it will be described by expression

− µ0M(t)
B0,i

= 1 − x0(t)
2a

+
x2

0(t)
2a2

Bp

B0,i

+ δ
x2

0(t)
4a2

Bp

B0,i

[
ln

Ea(t)
EC

+
4
3

ln 2 − 10
9

]
(24)

for all x0(t) < a. Here, Bp = µ0aJC is the field of complete
penetration.

It is seen that the magnetic moment relaxation rate
is practically proportional to the change in the moving
boundary rate dx0/dt. Moreover, similarly to the super-
conductors with the power I-V characteristic, the qual-
itative peculiarities of magnetic relaxation in supercon-
ductors with the exponential I-V characteristic are fully
determined by the dynamics of the electric field relaxation
on the surface of the superconductor.

Figure 6 shows the time-variation of the magnetiza-
tion depth and the electric field on the surface of the
low-temperature superconductor (EC = 10−4 V/m, JC =
4 × 109 A/m2, Jδ = 4 × 107 A/m2). The rate of the ex-
ternal magnetic field was set as dB/dt = 1 T/s and its
increase was stopped at t ≥ 2 × 10−4 s. In Figure 7 the
results of numerical and analytical calculations are com-
pared for the high-temperature superconductor with pa-
rameters EC = 10−8 V/cm, JC = 1.15×105 A/cm2, Jδ =
8.686×103 A/cm2. It was supposed that the external mag-
netic field increases at the rate dB/dt = 7.5 × 10−3 T/s
and fixed at t ≥ 2 × 10−4 s. As it has been mentioned
above, the corresponding electric field distributions E0(x)
specified at t = ti were taken according to the numerical
simulation of the ramp rate stage.

The given solution indicates that, unlike superconduc-
tors with the power I-V characteristic, the relaxation in
superconductors with the exponential I-V characteristic
will be characterized by existence of three regimes. They
are due to the corresponding variation of the electric field
on the surface. Firstly, at t−ti � te the initial stage of the
relaxation takes place. Secondly, the magnetic relaxation
has the stage that can be called as quasi-scaling stage. Its
duration depends on the superconductor’s properties. For
example, for a low-temperature superconductor the time
of existence of its quasi-scaling stage is much longer than
that for a high-temperature superconductor. During both
stages the moving boundary of the magnetization region
increases practically in accordance with the scaling law.
This enables the scaling approximation to be used and
the characteristic rates of the magnetic relaxation to be
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Fig. 6. Dynamics of moving boundary (a) and electric field (b) on the surface of Nb-Ti superconductor with the exponential
I-V characteristic: 1 – numerical solution for the ramp rate and relaxation stages, 2 – scaling solution described by formulae
(19, 21, 22), 3 – solution described by formulae (20, 21, 23).

Fig. 7. Dynamics of moving boundary (a) and electric field (b) on the surface of YBCO superconductor with the exponential
I-V characteristic: 1 – numerical solution, 2 – scaling solution described by formulae (19, 21, 22), 3 – solution described by
formulae (20, 21, 23).

determined. For the initial stage it is nearly constant and
can be estimated as

dM

dt
∼ dxa,0

dt
≈ B0,iγ1

µ0Jδ

δ

1 + 2δ

1
te

(
te
tx

) δ
1+2δ

, t − ti < te.

The quasi-scaling stage is characterized by the rate de-
creasing with time and at t − ti > te it equals

dM

dt
∼ dxa,0

dt
≈ B0,iγ1

µ0Jδ

δ

1 + 2δ

1
t − ti

(
t − ti

tx

) δ
1+2δ

.

Finally, at the last relaxation stage its evolution ac-
cording to (15) lies outside the scaling law. This stage will
be observed at the times, which can be estimated from
inequality x0(t)/xa,0(t) > 1.

It is necessary to note the difference in the results of
numerical and analytical calculations of the magnetization

region boundary. As follows from Figure 7a , the approx-
imate analytical calculations of x0(t) at the initial and
quasi-scaling stages enable these stages to be described
exactly enough. However, then the results of numerical
and analytical calculations begin to differ. The numer-
ical analysis of the corresponding electrodynamic states
reveals the following regularity. The relaxation of the elec-
tromagnetic field induced in a superconductor with the
exponential I-V characteristic is characterized by the for-
mation of a relatively long conjugation region between
the disturbed and undisturbed values of the electromag-
netic field. Its size increases with time but the values
of electric and magnetic fields induced inside this area
are negligibly small. This end-effect is characteristic of
both low and high-temperature superconductors. In the
former case it is less significant. Therefore, the approxi-
mate solution formulated without taking into account the
end-effect allows the electromagnetic field relaxation in
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Fig. 8. Electric field distribution in YBCO superconductor with the exponential I-V characteristic determined according to the
numerical solution (—) and solution described by formulae (20, 21, 23) (- - - -): 1 − t = 1 s, 2 − t = 5 s, 3 − t = 10 s.

low-temperature superconductors to be accurately de-
scribed. However, it may lead to the discrepancy in the
calculation of x0(t) for high-temperature superconductors.
Figure 8 shows the corresponding results of numerical and
analytical calculations of the spatial electric field distribu-
tion in a high-temperature superconductor during its re-
laxation. The curves in the insets of Figure 8 demonstrate
the discussed peculiarities of conjugation region forma-
tion. A similar analysis was performed for superconductors
with the power I-V characteristic. It reveals that, unlike
the states of the superconductors with the exponential I-
V characteristic, the end-effect of the conjugation region
in superconductors with the power I-V characteristic is
practically absent.

6 Conclusions

The above theoretical results indicate the existence of the
magnetic relaxation peculiarities in superconductors with
the power and exponential I-V characteristics describing
the flux creep in the macroscopic approximation. It is
shown that in the flux-creep regime a special state is es-
tablished in response to arbitrary external perturbations.
As a result, the relaxation phenomena are characterized
by the formation of electromagnetic wave propagating in
the superconductor at a finite rate. In this case electric
field and magnetic induction induced inside a supercon-
ductor by external perturbations smoothly approach their
undisturbed values at moving penetration boundary.

A comparative analysis of the relaxation dynamics in
superconductors with the power and exponential I-V char-
acteristics shows that the equivalence of the obtained re-
sults depends on the character of the power I-V character-
istic. Considerable difference will be seen at n < 10 when
the creep strongly affects the electromagnetic field distri-
bution. The proposed analytical solutions also show that
the main qualitative difference is in the dynamics of the

electric field on the surface of the superconductor, which
determines the character of the magnetic relaxation. For
a superconductor with the power I-V characteristic it is
described by two characteristic regimes with the rates de-
pending on the superconductor’s properties and the his-
tory of the external magnetic field change. At the same
time, relaxation phenomena in superconductors with the
exponential I-V characteristic have three stages. The first
two stages are qualitatively analogous to the stages of a
superconductor with the power I-V characteristic. But at
the final stage of relaxation its rate is higher than the
rate of relaxation in a superconductor with the power I-
V characteristic. As a result, the magnetic relaxation in
a high-temperature superconductor with the exponential
I-V characteristic is more intensive than that in a super-
conductor with the power I-V characteristic.

These peculiarities are connected with the different
character of the change of the power and exponential I-V
characteristics in the low electric field area and thus corre-
spond to the different variation of the differential resistiv-
ity of a superconductor in this electric field area. As follows
from (1, 3), at the same value of induced screening cur-
rent density the differential resistivity of the superconduc-
tor with the exponential I-V characteristic may be lower
than that in the superconductor with the power I-V char-
acteristic. Therefore, the electric field will decay more in-
tensively into the superconductor with power I-V charac-
teristic than into that with exponential I-V characteristic.
As this difference is more noticeable in I-V characteristic
of the high-temperature superconductors, the qualitative
and quantitative difference in the magnetic relaxation oc-
curring in the superconductors with the exponential and
power I-V characteristics will be the most noticeable in
high-temperature superconductors. These results should
be taken into consideration when equations (1, 3) will be
used to describe experimental data of I-V characteristics
and especially for high-temperature superconductors.
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